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Abstract

MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear
Energy Advanced Modeling and Simulation Program. With this report, we release a new version of
MARMOT, summarize its implemented capabilities, and document the ongoing development of new
capabilities planned for the next release. The purpose of MARMOT is to predict the coevolution of
microstructure and material properties of nuclear fuel and cladding due to stress, temperature, and ir-
radiation damage. It accomplishes this using the phase field method coupled to solid mechanics and
heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment
(MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat
conduction come directly from MOOSE modules.
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1 Introduction

With this report we release the version 1.0 of the MARMOT microstructural simulation code. We briefly
enumerate the capabilities developed for and implemented into MARMOT. Future reports of this kind
will be of incremental nature and will reference the previous reports. The development of MARMOT
is managed using the git source control system. Development of MARMOT is continuous and ongoing.
Rigorous automatic testing procedures ensure that every incremental version of MARMOT is a usable
product on its own. For this report we used the git tag “v1.0” to mark a specific point in the development
history as our first official release (Fig. 1.1).

For a more comprehensive discussion of simulation results produced with MARMOT and for a dis-
cussion of code verification and validation we refer to the MARMOT Assessment Report [1] published
in April 2015.

1.1 MARMOT Development

NEAMS FPL developed the MARMOT code as a robust numerical tool for mesoscale modeling of
fuel performance to predict the coevolution of microstructure and properties in fuel and cladding ma-
terials, providing a new capability at length scales above the first principles density functional theory
and MD domains. MARMOT accomplishes this using the phase field method coupled with finite strain
mechanics and heat conduction. MARMOT is based on the open source Multiphysics Object-Oriented
Simulation Environment (MOOSE) [2] and solves the coupled partial differential equations defining the
physics using the finite element method [3]. MARMOT is being developed in order to facilitate the
development of improved materials models for fuel performance, but it is also being developed as a
powerful tool in and of itself for the simulation of mesoscale fuel performance.

While the goal of the MARMOT tool is focused on investigating fuel and cladding materials, many
of the capabilities employed by the code could also be applied to other materials and applications.
Therefore, the general capabilities for the phase field method, solid mechanics, and heat conduction
are contained in physics modules that are distributed with the MOOSE framework. Any user that
downloads MOOSE can instantly use these tools to rapidly develop multiphysics mesoscale simula-
tion tools for a wide range of different applications. These are the phase field, tensor mechanics,
and heat conduction modules. MARMOT builds on these modules and adds specific materials and
models for fuel and cladding materials.

The splitting of MARMOT components into export controlled and open sourced parts allows us to
make as many capabilities as possible available to the general research community. This fosters the
proliferation of MOOSE based research codes, helps MOOSE/MARMOT get established as a standard
research code, and generates code contributions from external users. We connect with these external
users through the MOOSE users mailing list and work on developing lasting collaborations though joint
proposals and by utilizing the INL student internship program.

1.2 External Use of MARMOT

For the access controlled MARMOT code we have active users and contributors at the following insti-
tutions:

• University of Arkansas

• University of South Carolina
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Figure 1.1: Screen shot of the git source control web frontend at https://hpcgitlab.inl.gov show-

ing the tagged v1.0 release of MARMOT.

• Purdue University

• Penn State University

• BYU Idaho

• University of Idaho

• Oregon State University

• Missouri University of Science and Technology

• Massachusetts Institute of Technology

• Los Alamos National Laboratory

• Washington State University

• University of Wisconsin

The use of the open source phase field and tensor mechanics components that are being developed

for MARMOT is more difficult to track. An analysis of MOOSE user mailing list contributions shows

active contributions from the following institutions.

• Max-Planck-Institut für Eisenforschung, Germany

• Idaho State University

• Shanghai Jiao Tong University, Shanghai

• Texas A&M University

• University of Michigan

• Commonwealth Scientific and Industrial Research Organisation, Australia

The mailing list currently has over 400 subscribers, with a majority being silent. We expect that with

an approximate fraction of 20% of all mailing list posts dealing with phase field and tensor mechanics

issues the number of unreported phase field / tensor mechanics users is substantial. We plan to address

this issue with a MOOSE/MARMOT user census in the upcoming fiscal year. This will ensure that we

can reach out to current and potential users

5
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1.3 Mechanistic Material Model Development

Fuel and cladding materials undergo significant microstructure evolution during reactor operation. This
evolution also changes the fuel properties, directly impacting fuel performance and safety. Traditional
fuel performance codes account for these changes in properties using materials models that are empirical
fits to experimental data and are correlated to burn-up and temperature. However, these models can
only be interpolated within conditions where the tests were conducted and cannot be trusted when the
irradiation conditions change, because burn-up is not a unique measure of the history of the fuel material.
The Fuels Product Line (FPL) in the Nuclear Energy Advanced Modeling and Simulation (NEAMS)
program is developing new materials models that are mechanistic and are based on microstructure rather
than burn-up.

In this microstructure based approach, the current state of the microstructure is defined by a set of
microstructure variables, e.g. average grain size, grain boundary coverage, and intragranular gas bubble
porosity. These variables are evolved with time using mechanistic equations defining the physics of
the phenomena. In turn, the material properties are functions of these variables as defined by other
mechanistic equations. Thus, this set of variables and mechanistic models describes the interplay of
the various microstructure changes that take place within the fuel during irradiation and predicts the
resultant degradation in material performance.

1.4 Report Overview

In this report we list the capabilities of version 1.0 of the MARMOT microstructural simulation tool and
give an outlook on the current and planned developments. The report is structured into five sections. The
introduction section is followed by sections for the phase field 2 and tensor mechanics 3 physics modules,
which are being developed for and used by MARMOT but are distributed as part of the opensource
MOOSE framework. MARMOT specific material models are listed in section 4. Concluding remarks
are given in section 5.
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2 Phase Field Capabilities

The phase field module in MOOSE contains the necessary tools to solve the partial differential equa-
tions for the phase field method that define the microstructure variable evolution to minimize the overall
free energy. The evolution of non-conserved order parameters ηi (representing phase regions and grains)
is governed by the Allen-Cahn equation (2.1) and conserved order parameters ci (representing concen-
trations) are evolved using the Cahn-Hilliard equation (2.2).

2.1 Modular free energies

∂η j

∂t
=−L j

δF
δη j

(2.1)

∂ci

∂t
= ∇ ·Mi∇

δF
δci

(2.2)

F is the total free energy of the modeled system as a function of the phase field variables, which can
be formulated as a volume integral

F =
∫

Ω

[
floc(~c,~η)+ fgr(∇~c,∇~η)+Ed

]
dV, (2.3)

over multiple free energy density contributions, where Ω is the simulation domain, floc is the local free
energy density, fgr is the gradient energy contribution, and Ed is the contribution of other sources of
energy. The~c,~η and ∇~c,∇~η indicate a functional dependence on all conserved and non-conserved order
parameters in the domain and their gradients, respectively. Executing the variational derivatives in (2.1)
and (2.2) yields terms containing the derivatives of the local free energy density floc with respect to all
order parameters.

The thermodynamic properties of the modeled system are determined by the thermodynamic potential
in floc. The gradient contribution fgr is the reason the phase field model represents interfaces with a
diffuse width, and contributes to the interfacial energy. floc is therefore the primary input needed to
formulate a new phase field material model. In the phase field module, the residuals for the generic
phase field equations are provided as kernels, while the free energy and its derivatives are supplied by
material objects. We use a special material interface to provide material properties for all necessary
derivatives of the free energy. In general, users use the provided kernels without modification, and only
create material objects defining different free energies.

This material interface is now also used to provide the mobilities Mi and L j, which allows them to
be functions of arbitrary non-linear variables. All derivatives of these mobilities arising in either the
residual or Jacobian equations are provided through derivative material properties. Furthermore we
generalized the mobility expressions to allow for tensorial forms which accommodate anisotropy. We
were able to implement this without code duplication by utilizing C++ templates, where the type of the
mobility value (and its derivatives) is a template parameter that can be set to scalar or tensorial types.

The standard MOOSE solver uses the preconditioned Jacobian-free Newton Krylov method (PJFNK),
provided by the PETSc library [4]. To improve the convergence of the solve, the chosen preconditioning
matrix should be as close as possible to the actual Jacobian of the problem. Computing the Jacobian
matrix entries effectively means providing the derivatives of the residual vector with respect to all non-
linear variables of the problem, thus requiring additional derivatives (including cross-derivatives) of the
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free energy functional. Especially for quaternary two phase free energy this amounts to a large number
of derivatives to be evaluated.

2.1.1 Automatic differentiation

To create a material object that defines the free energy for a phase field model, code must be written
that defines the thermodynamic free energy expression, but also its derivatives. For non-conserved order
parameters, the 2nd derivatives are needed and for conserved order parameters, up to the 3rd derivatives
could be required. This is complicated even more when a free energy is a function of multiple variables,
because all cross derivatives are also required. To avoid having to take and implement all the derivatives,
we have implemented automatic symbolic differentiation.

MOOSE uses the Function Parser library that is included as a third-party plugin in the underlying
libMesh finite element library [5]. The Function Parser Library accepts a mathematical function defini-
tion given as a plain text string. This string is lexically parsed into an intermediate tree representation
and then transformed into a stack machine bytecode. This bytecode can then be executed by the function
parser bytecode interpreter module as often as necessary without further transformations.

This intermediate tree representation of the function parser expressions lends itself to algorithmic
transformations, such as an automatic differentiation procedure. In this tree structure, leaf nodes can
correspond to constants or variables, and internal nodes correspond to mathematical operators and func-
tions with the arguments contained in the respective child nodes or subtrees. The derivative of the leaf
nodes yields 0 for all nodes that do not represent the variable the derivative is taken with respect to,
and 1 for all nodes that do represent the variable. The derivatives of the internal nodes are constructed
recursively according to a set of elementary derivative rules.

The function parser library provides a comprehensive algebraic optimizer that groups, reorders, and
transforms the function expression into an equivalent but faster to evaluate form. This optimization stage
delivers a speedup of a factor of two, on average. The algebraic simplifications are essential to remove
the trivial leaf node derivatives which may lead to evaluation errors such as divisions by zero, that can
be avoided by simple term cancellations. In the above example, the simplifications reduce the derivative
expression to 2x(y+5).

2.1.2 Just-in-time compilation

To further improve the performance of the parsed and runtime interpreted functions, we have developed
a just-in-time (JIT) compilation module. At runtime, the generated bytecode sequences are automati-
cally transformed into small C source code files. A compiler is dispatched to compile each function file
into a dynamically linkable library, which then is loaded on the fly using the dlopen POSIX system call.
If at any stage the JIT compilation fails the function evaluation falls back on the bytecode interpreter,
otherwise the generated machine code is called. The time overhead of the additional compilation step is
on average of the order of 0.1s per function expression or below, depending on the system the simula-
tion is executed on. This is further mitigated by a caching system. A unique hash is computed from the
function bytecode and the compiled functions are stored permanently using the hash as a filename. Re-
compilation will only occur if the bytecode, and thus the function expression, changes. Trivial function
changes, namely the modification of constants, will in most cases not trigger a recompilation. Through
this automatic differentiation system we achieve a significant reduction in developer time and remove a
source of developer errors that are difficult to track down and debug. The resulting models offer optimal
convergence properties due to the complete implementation of the full Jacobian matrix.

2.1.3 Expression Builder

To generate functional expressions for free energies and mobilities that can be passed to the automatic
differentiation algorithm we have developed the ExpressionBuilder system. ExpressionBuilder is a C++
class that gets added to MOOSE objects such as Materials through inheritance and makes a set of new
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nested classes available to hold terms and functions. A term is defined as a symbol, a number or a
mathematical operator and its parameters. A function is defined as a term with a substitution rule that
substitutes the function arguments into the underlying term. In addition ExpressionBuilder provides
overloaded operators that accept the new term and function types as parameters and returns augmented
terms. Terms are internally stored as tree structures. Nodes in these trees can represent operators or
mathematical functions (such as the logarithm or trigonometric functions) or symbols and numbers.
Operators and function nodes have child nodes representing their arguments (e.g. left hand side and
right hand side). The overloaded operators assemble a tree representing an entire expression step by
step. Named terms and functions can be combined to form new terms and functions, allowing the
construction of complex expressions. The syntax of expression builder is designed to naturally match
mathematical expressions as they can be found in scientific publications.

2.2 Multiphase models

Multiphase model development requires the construction of a global free energy functional spanning the
entire phase space of the system. One common approach is utilizing a linear combination of the free
energy densities floc, j of each phase in the system.

floc(~c,~η) =

[
∑

j
h(η j) floc, j(~c)

]
+Wg(~η) (2.4)

A switching function h(η) smoothly changes from 0 to 1 as η goes from 0 to 1. The total weight of all
phase free energy contributions at each point in the simulation volume is exactly unity, which translates
to the need to enforce the constraint k(~η) = 0 for

k(~η) =

[
∑

j
h(η j)

]
−1. (2.5)

For the gradient interface term fgr multiple models are implemented as MOOSE kernels. The most
comprehensive model accepts individual gradient energy factors κi j for interfaces between arbitrary
pairs of order parameters ηi, η j and is defined as

fgr = ∑
a,b

b6=a

1
2

κab |ηa∇ηb−ηb∇ηa|2 . (2.6)

2.2.1 Constraint enforcement

Two phase systems can easily be modeled using a single order parameter η1 and the explicit constraint
η2 = 1−η1, which, for a symmetric switching function with h(η) = 1−h(1−η), satisfies the constraint
k. For n-phase systems with n > 2 it becomes advantageous to use n order parameters. In this case the
constraint k is not automatically satisfied and needs to be enforced by other means. In the MOOSE phase
field module we offer two methods to enforce the switching function sum constraint, a hard constraint
utilizing the Lagrange multiplier technique and a soft constraint through a penalty term added to the free
energy.

The hard constraint is applied by introducing a Lagrange multiplier λ as a field variable. With
a j(~η,~c,v) being the weak form (Allen-Cahn) residual for the jth non-conserved order parameter, we
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need to find (~η,λ) satisfying the boundary conditions such that

a j(~η,~c,v)+
∫

Ω

λ
∂k

∂η j
vdx = 0 (2.7)∫

Ω

q
∂(λk)

∂λ
dx = 0 (2.8)

holds for every test function v and q. We note that these equations alter the character of the Jacobian
matrix of the non-linear problem substantially by introducing a zero block on the Jacobian diagonal.
This can complicate the solve substantially. By replacing the constraint k with a modified constraint

k̄(~η,λ) = k(~η)− ε

2
λ, (2.9)

the Jacobian fill term ε

2 λ introduces a small λ dependence in the constraint through an ε (which defaults
to 10−9). This results in an on-diagonal Jacobian value of −ε in the kernel of Eq. (2.8), while it drops
out in the residual of Eq. (2.7). This is necessary to force a Jacobian matrix with full rank, avoiding
Zero pivot PETSc-Errors, and greatly improves convergence. This approach results in a violation of the
constraint by about ε, though this violation can be kept small by using an ε as small as possible.

As an alternative we implemented a soft constraint by constructing a penalty contribution fp to the
free energy as

fp = χ

[
1−∑

j
h(η j)

]2

, (2.10)

where χ is a configurable penalty factor.

2.3 Nucleation model

To deal with precipitate nucleation, as it is for example occurring during the aging process of the RPV
materials, the phase field method needs to be augmented. Phase field is intrinsically fluctuation free and
strictly minimizes the free energy in absence of external driving forces. Nucleation processes depend
on thermal fluctuation for nuclei to overcome the Gibbs barrier which results from energy penalty of
a newly forming interface between nucleus and matrix. Two classes of approaches for implementing
nucleation phenomena in phase field can be found in the literature. One approach is adding thermal
fluctuations to the order parameter fields (which is implemented in the MOOSE phase field module
through the conserved noise classes). The main drawback of this approach is the timestep reduction
incurred by adding the short timescale fluctuations to potentially long timescale diffusion processes.
This drawback is avoided by the second type of nucleation model in which nuclei above the critical
size are directly inserted into the simulation cell, bypassing the nucleus formation step. When a stable
nucleus is inserted into the simulation cell all conserved order parameters must retain their total value.
In practice that means a depletion zone must be constructed around the nuclei. It is not straight forward
how that zone is supposed to look like in heterogeneous microstructures.

We have developed a free energy based discrete nucleation model for the phase field method to address
the issue of conserving concentrations and establishing physical depletion zones. At a nucleation site
the local free energy density of the system is modified with an additional term that is computed from a
list of order parameter (concentration or phase) values and their desired target values for the phase that
is supposed to nucleate. As a simple first approach the sum of squares of the differences of an order
parameter value ci and its target values c̄i is multiplied with a prefactor γ and added to the free energy
density. This free energy modification coerces the system to form stable precipitates.

fnuc = γ∑
i
(ci− c̄i)

2 (2.11)
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Figure 2.1: Concentration profiles along a spherical chromium rich α′ particle in an Fe-15%Cr alloy at
different times during the nucleation and growth process.

Nucleus positions are randomly chosen according to a nucleation probability density which can be
calculated using classical nucleation theory. The nucleus list is updated at each timestep, adding new
nucleation sites (if nucleation events were determined to happen) and removing old nucleation sites
once they expire. Each nucleation site is kept in the list for a set hold time. The hold time is chosen
sufficiently long for the precipitate to form on the diffusive timescale of the system. As the precipitate
forms at the target composition the free energy density fnuc goes down to zero at the nucleation site.

The nucleation algorithm is implemented in MOOSE using two user objects and a material class. One
user object manages the global nucleus list, which is synchronized between MPI processes. The second
user object uses this list to create a map of all quadrature points in the system that are covered by a
nucleation site. A customizable radius can be assigned to the nucleation sites to stabilize precipitates
of a given minimum size. The material class accesses the map user object to decide whether the free
energy should be modified for a given quadrature point. This approach allows to update the map only if
the nucleus list has changed or the mesh was adapted, ensuring the best possible performance.

Data from an example nucleation simulation in an Fe-15%Cr alloy is shown in figure 2.1. The
chromium concentration profiles of a developing nucleus as a function of distance r from the nucleus
center are plotted as a function of time. At early times the nucleus forms by absorbing solute from the
immediate surroundings of the nucleations site. A small concentration depression can be seen in the
nucleus center. This is an artifact of the model and can be adjusted by modifying the nucleation energy
penalty profile. At later times solute has diffused over longer length scales widening the depletion region
and forming a plateaued concentration profile in the precipitate.

Figure 2.2 shows the maximum chromium concentration observed at any point in the simulation cell
and total nucleation free energy penalty as functions of time. The maximum concentration saturates at
about unity, which is the expected α′ concentration in the precipitate. At this point an α′ nucleus has fully
formed, but it may be below the critical size. The nucleation energy penalty zone stabilizes this nucleus
and drives further growth until the volume of the nucleus completely covers the penalty volume. At that
point the nucleation free energy penalty reaches zero. The size of the penalty zone must be chosen so
that a nucleus of stable size above the critical radius formed. Growth of the particle can then proceed
in a natural way, unperturbed by the nucleation algorithm. Any applied nucleation penalty is switched
off after a chosen time to allow the precipitate to evolve naturally, which could include vanishing due to
coarsening (e.g. Ostwald ripening) processes. The switch off time for the nucleation penalty should be
chosen to approximately match the the vanishing of the nucleation free energy.
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Figure 2.2: Maximum chromium concentration observed at any point in the simulation cell and total
nucleation free energy penalty as functions of time. The maximum concentration saturates
at about unity, which is the expected α′ concentration in the precipitate. The nucleation free
energy penalty reaches zero as soon as a sufficiently large α′ particle is formed. At that point
the stable size of the particle is reached and the growth regime takes over.

2.4 Mechanics coupling

The modular free energy approach allows for a straight forward coupling of the solid mechanics to the
phase field equations. A material class is provided to compute the local elastic free energy density
using the stress and strain states of the sample as a function of position. This ElasticEnergyMaterial
automatically provides the necessary derivatives with respect to the coupled variables in the underlying
mechanics properties. A coupling can emerge for example if a composition dependent Eigenstrain
class was added to the problem. This Eigenstrain class will automatically set the needed derivatives of
strain with respect to the composition variables. These derivatives are picked up by the elastic energy
material to provide composition derivatives of the elastic energy. The elastic energy is combined with
the chemical free energy using a DerivativeSumMaterial object.

2.4.1 Rigid body motion

The simulation of sintering processes, which is of interest in the fabrication of fuels, requires the model-
ing of rigid body motion of individual powder grains. We have implemented a rigid body motion system
[6] within the phase field framework based on a system of integro-differential equations that accumulate
forces and torques on individual particles, which are defined by their unique phase order parameters.
The body forces are applied to the particles as advection terms that move the particles as rigid bodies.

2.5 Fracture model

Brittle fracture at the microstructure scale, involving complicated crack paths, can be modeled using the
phase-field approach. Damage evolution and material degradation is achieved by solving the coupled
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system of equations

∇.
([

(1− c)2 + k
]

σ
+
0 −σ

−
0

)
= 0 (2.12a)

l∆c−β = 0 (2.12b)

ċ− 1
η

〈
β+2(1− c)

ψ
+
0

gc
− c

l

〉
+

= 0 (2.12c)

where c represents the damage variable that evolves from 0 to 1, with 0 and 1 representing the undamaged
and completely damaged states respectively. In equation 2.12c, η is a viscosity parameter that can be
utilized to approach the rate independent limit (η→ 0) and gc is an energy release type parameter. ψ

+
0

is the positive component of strain energy driving damage growth and defined as

ψ
+
0 = λ〈ε1 + ε2 + ε3〉2+ /2+µ

(
〈ε1〉2++ 〈ε2〉2++ 〈ε3〉2+

)
(2.13)

where ε1, ε2 and ε3 are the principal strains, λ is the Lamé constant and µ is the shear modulus. The
utilization of the positive component of strain energy as the driver for damage evolution prevents crack
growth under compressive strain states. The signed stresses in equation 2.12a follows

σ
±
0 =

3

∑
a=1

[
λ〈ε1 + ε2 + ε3〉±+2µ〈εa〉±

]
na⊗na (2.14)

where the operators 〈〉± are defined as 〈x〉± = 1
2 (x±|x|) and na are the directions of the principal strain

components. Such a representation of the damaged stress emulates contact of cracked faces. The appli-
cability of the present model is currently limited to isotropic small-strain elastic materials. This model
has been utilized to study the intergranular fracture behavior in UO2 fuels [7] and quasi-brittle fracture
in nuclear-grade graphites. A typical failed configuration of a representative volume and the stress-strain
evolution as obtained from phase-field fracture simulations of these materials are shown in Figures 2.3
and 2.4.

(a) (b)

Figure 2.3: Modeling of microstructure scale intergranular fracture in UO2 using phase-field fracture.
(a) Crack propagation in one of the microstructures pulled on the top and right faces with a
displacement ratio of 0.7. Crack arrest at triple points and branching thereof can be observed.
(b) Stress-strain evolution under uniaxial straining of microstructures with different porosity.
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(a) (b)

Figure 2.4: Modeling of microstructural scale quasi-brittle fracture in nuclear-grade graphite H-451. A
log-normal distribution of pores with an area fraction of 0.2 has been considered. (a) Crack
propagation in one of the microstructures pulled on the top face. The right face is kept
traction-free; (b) Stress-strain evolution in the microstructure for different loading cases:
Case-1 and 2 are for uniaxial loading, Case-3 for biaxial tensile loading, Case-4 and 5
for biaxial tension-compression loading with the same loading ratio and Case-6 for biax-
ial tension-compression with a loading ratio of 0.5.

2.6 Phonon transport

We have started initial investigations on coupling the Boltzmann transport equations of the MOOSE
based Rattlesnake application to MARMOT microstructure simulations for calculating the phonon trans-
port in microstructure samples. Phonons, as charge neutral quasi-particles, can be simulated with equa-
tions very similar to the equations that govern neutron transport. By mapping the corresponding mean
free paths and group velocities to the phonon transport properties we were able to simulate the phonon
transport in simple microstructures that result from phase field simulations or are reconstructed from
experimental data. Future developments of this capability will allow us to determine the thermal con-
ductivity of nano structured fuels and structural materials with precipitates and defect clusters.
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3 Tensor Mechanics Capabilities

The tensor mechanics module contains the MOOSE components implementing a comprehensive set
of solid mechanics models. It covers small strain linear elasticity, finite strain elasticity, and various
plasticity models. In this chapter we give an overview over the latest developments in the mechanics
capabilities of MARMOT.

3.1 Modular Mechanics

During FY15 the tensor mechanics module was redesigned using a more modular design. The computa-
tion of basic mechanics properties such as stress, strain, and elasticity tensors has been split into separate
MOOSE material classes, allowing for the combination of different modules into a variety of mechanics
models.

3.1.1 Strain

In the MOOSE finite element formulation the variables being solved for are the mesh displacements.
The strain is calculated using one of multiple material classes. For the small strain approximation the
ComputeSmallStrain material computes the strain as ε = 1

2((∇d)+ (∇d)T ), where (∇d) is the ten-
sor with the displacement gradients as column vectors. For incremental finite strain formulations the
ComputeFiniteStrain material provides a strain tensor utilizing stateful material properties. Both for-
mulations exist for 2D strains, plane strains, and axisymmetric RZ strains. The stress free strain (or
Eigenstrain) is added using classes derived from ComputeStressFreeStrainBase. Materials for con-
stant Eigenstrains and variable (e.g. composition and temperature) dependent Eigenstrains are provided.

3.1.2 Stress

The stress response of the material can be computed using either linear elasticity (ComputeLinear-
ElasticStress) or plasticity (ComputeMultiplasticityStress).

3.1.3 Elasticity tensor

The elasticity tensor is provided by materials derived from ComputeElasticityTensorBase. Constant
and variable dependent material classes exist. Convenience classes for specifying isotropic material
properties using combinations of the bulk modulus, Lamé’s constant, shear modulus, Young’s modulus,
and Poisson’s ratio as well as options to provide rotation angles for anisotropic elasticity tensors are
provided.

3.2 Crystal Plasticity

Crystal plasticity models can capture grain-level anisotropy in plastic deformation behavior by consid-
ering dislocation glide on individual slip systems. The total deformation gradient (F) is multiplicatively
split into an elastic (Fe) and plastic (F p) part as

F = FeF p (3.1)

where F p evolves in the intermediate configuration following
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Ḟ pF p−1 = ∑
α

γ̇
αmα

0 ⊗nα
0 (3.2)

In equation 3.2, γ̇α is the glide rate on an individual slip system, α, and, mα
0 is the direction of glide and

nα
0 is the glide plane normal in the intermediate configuration. The glide rate is based on the power law

γ̇
α = γ̇0

∣∣∣∣τα

sα

∣∣∣∣m sgn(τα) (3.3)

where γ̇0 is a reference strain rate, m is the power-law exponent, τα are the resolved shear stresses and
sα are the slip system resistances on individual slip systems. The resolved shear stress on a slip system
can be obtained from

τ
α = T ∗ : mα

0 ⊗nα
0 (3.4)

where T ∗ is the 2nd Piola-Kirchhoff stress in the intermediate configuration. The evolution of the slip
system resistances follows

ġα = ∑
β

qαβhβ

∣∣∣γ̇β

∣∣∣ (3.5a)

hα = h0

∣∣∣∣1− sα

τ0

∣∣∣∣a sgn
(

1− sα

τ0

)
(3.5b)

and is based on [8]. In equation 3.5, qαβ, h0, τ0 and a are parameters governing the self and latent
hardening behavior. The implicit integration algorithm proposed in [9] has been employed to integrate
the equations. A sub-stepping algorithm has also been implemented to enable efficient integration of the
model. The distribution of one of the Euler angles, normal component of F p along the loading direction
in a Voronoi tessellated microstructure and the stress-strain evolution obtained from this model is shown
in Figure 3.1.

(a) (b) (c)

Figure 3.1: Demonstration of crystal plasticity model applied to a Voronoi tessellated polycrystalline mi-
crostructure. (a) One of the component of Euler angles on a plane. (b) Distribution of normal
component of F p along the loading direction on that plane. (c) Stress-strain evolution.

This model has been extended in Grizzly for ferritic/ferritic-martensitic steels to capture the effect of
irradiation damage on localized plasticity and softening at high dose-levels.

3.3 Hyperelastic Viscoplastic model

The hyperelastic viscoplastic model solves the general rate dependent multi-plasticity equations in the
intermediate configuration. Similar to equation 3.1, the total deformation gradient is multiplicatively
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split and the evolution of the plastic component of deformation gradient is represented by

Ḟ pF p−1 =
N

∑
i=1

λ̇
ir

i
(3.6)

where N is the number of plastic flow models, λ̇i is the flow rate for any flow model and r
i

is the asso-
ciated flow direction. In essence, this model can concurrently handle multiple flow rules and potentials.
Presently the flow potential for J2 plasticity has been implemented and the flow rate (λ̇i) is defined using
the power law as

λ̇ = λ0

(
σeq

σY S(ε
p
eq)

)m

(3.7)

where σeq is the equivalent stress, λ0 is the reference flow rate, σY S is the yield stress and ε
p
eq is the

equivalent plastic strain. Any other flow potential and flow rate model can be implemented within this
framework by inheriting from the J2 plasticity user object. The implicit backward Euler scheme is used
to integrate the rate equations and the residual equation is constructed for the λ̇i variables. The internal
variables and the 2nd Piola-Kirchhoff (PK2) stress is updated at every Newton-Raphson iteration for λ̇i.
The calculation of the PK2 stress in this model is performed in an user object. This also allows the
incorporation of damage models in a coupled manner as opposed to more standard staggard algorithms.

Initial comparison of this model has been performed with the hypoelastic rate independent J2 plasticity
model. Near rate independency in this model has been achieved by selecting a large value for m (= 50).
The comparison of the stress-strain evolution is shown in Fig. 3.2(a). A comparison of the stress-strain
as obtained from single and 2 flow model is shown in Fig. 3.2(b). Both the models use J2 plasticity with
Ramberg-Osgood hardening. However, the hardening exponent (n) is different for the two models.

(a) (b)

Figure 3.2: (a) Comparison of stress-strain evolution between hyperelastic viscoplastic and hypoelastic
rate independent plastic models. (b) Comparison of stress-strain evolution between single
and 2 flow models. A Ramberg-Osgood hardening model with hardening exponent n = 0.1
and 0.12 has been used in the different models.
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4 Material Models

MARMOT contains specific material models for nuclear applications. We briefly list the existing capa-
bilities in this chapter.

4.1 General material models

The parsed material system with the automatic differentiation support allows us to move a large portion
of the material model development from the source code into input files. This allows rapid turnaround
times during model development and allows external contributors to develop and share material models
without programming expertise.

4.1.1 Iron chromium

We have implemented the iron chromium model by [10] (as shown in 2.3) which provides the free energy
surface of an iron chromium binary alloy as a function of chromium concentration and temperature. We
entered the full free energy expression from this publication into a MOOSE input file using a parsed
function material with automatic differentiation. A running phase field model was obtained in a matter
of minutes. In agreement with the published free energy surface and resulting phase diagram we observe
practically no solubility of iron in the chromium precipitates, while the chromium solubility in the iron
matrix is at around 6.7% at the simulation temperature of 500 K.

4.1.2 CALPHAD

The thermodynamic database effort by the CALPHAD project has generated a wealth of free energy
and mobility data that could be of use for constructing future multi-phase and multi-component phase
field models. We have developed a set of classes that implement a subset of the existing CALPHAD
functional forms. This allows users to specify parameterizations for CALPHAD type free energies found
in the literature. This has been tested on the zirconiumhydride and uranium-zirconium system. These
classes utilize the ExpressionBuilder system (2.1.3) internally.

4.1.3 Polycrystalline materials

An isotropic grain boundary energy model for polycrystalline samples with multiple components (e.g.
gas bubbles) is available in MARMOT and has been used to model polycrystalline metals and UO2 fuels.
The polycrystalline material system supports individual grain properties such as varying orientations
and anisotropic mechanical properties. A preliminary version of an anisotropic grain boundary energy
model that is fit to atomistic grain boundary energy data as function of relative grain orientation and
grain boundary plane is included in the 1.0 release of MARMOT. This so-called five degrees of freedom
model is in active development and is based on a paper by Bulatov et al. [11]. We are working on
generating a grain boundary energy function fit for the UO2 system.
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4.2 Specific material models

4.2.1 Uranium dioxide xenon

We have implemented a UO2Xe model using the Kim-Kim-Suzuki (KKS) multiphase model [12]. KKS
addresses the issue of systems with large phase free energy differences in the interfacial regions. The
Xenon gas solubility in the solid UO2 matrix is very low, with large free energy penalties for large gas
concentrations. In the bubble phase the equilibrium gas concentration is determined by the vacancy to
gas atom ratio of a gas. In the bubble matrix interfacial region both the order parameter as well as the
concentration change from the bubble equilibrium values to the matrix equilibrium values over a finite
distance due to the soft interface approximation. In that interfacial region the phase free energy of both
phases is computed for the intermediate concentration range, which results in large free energy densities
from the solid phase contribution. This effectively increases the interfacial free energy of the bubbles
significantly to an unphysical value.

The KKS model solves this by introducing the concept of phase concentrations, which are effectively
the fractions of the total concentration held in a given phase. In this model the gas concentration is
largely shifted to the gas phase to avoid the free energy penalty. Solving for these added variables
requires additional differential equations. In the KKS model these are given by mass conservation
equations and a constraint that requires the chemical potentials of each component to be pointwise equal
across all phases.

4.2.2 Uranium zirconium

We implemented the uranium zirconium free energy and mobility model from Chevalier et al. [13] using
the ExpressionBuilder system (2.1.3). Details of this U-Zr model can be found in the AFC report [14].
This effort is ongoing and will be continued in the future.

4.3 Initial conditions

MARMOT contains a library of initial condition classes that are specifically designed to setup commonly
used microstructures at the beginning of a simulation. These microstructures can be used as starting
points for simulating the microstructural evolution of the material systems of interest. Initial condition
data can also be use to perform virtual experiments on fixed microstructures, such as mechanical property
or thermal conductivity measurements.

We supply a series of initial conditions to set up patterns of precipitates or gas bubbles, polycrystalline
samples (geometric or randomized Voronoi tessellations), and perturbed interface structures. A capa-
bility specifically developed for MARMOT is the EBSD reader system which allows the construction
of simulation samples from experimentally characterized microstructures from EBSD sectioning data or
X-ray tomography data.

4.4 Fission Gas Release

Apart from the capability for microstructure based simulation of the diffusion and precipitation of fis-
sion gas in polycrystalline samples MARMOT contains an implementation of the analytical fission gas
release model by Pastore et al. [15]. The model implements a 1D spherical grain approximation that
can be coupled to a BISON simulation using the MOOSE MultiApps capability. Multiple MARMOT
child simulations are managed by a BISON master simulation. BISON computes the global temperature
and grain boundary fission gas distribution within a fuel pellet, while MARMOT computes the grain
boundary coverages and the fractions of trapped and dissolved fission gas.
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5 Conclusions

The MARMOT tool being developed by the NEAMS FPL predicts the coevolution of microstructure
and material properties in fuel and cladding materials due to temperature, stress, and irradiation dam-
age. MARMOT is built using the capabilities available in the phase field, tensor mechanics, and
heat conduction modules in the open source MOOSE framework. Though MARMOT is being de-
veloped as a mesoscale fuel performance tool, it is also being used to inform engineering scale fuel
performance codes to develop microstructure rather than burn-up based material models.

MARMOT has built-in capabilities for constructing multi-phase multi-component phase field models
that are fully coupled to a solid mechanics solve. The mechanical properties can be phase and compo-
sition dependent. Our modular free energy system with automatic differentiation allows for incremental
model development where pieces fit together like LEGO bricks. We believe this makes MARMOT a
powerful research platform beyond its immediate nuclear applications, providing a flexibility and exten-
sibility that will ensure its usefulness in future NEAMS applications.

MARMOT is developed by a community of users and the code base is managed with the Git version
control system. It is hosted on an internal INL Gitlab repository which has automated tools for issue
tracking, automated testing, and collaborative code review. The MARMOT code base undergoes rig-
orous quality assurance and verification throughout its development, and the materials models are also
being validated when data is available. The code is verified using the method of manufactured solution,
comparison to analytical models, and comparison to molecular dynamics simulations.

MARMOT has been funded by the NEAMS program to develop models for UO2. Up to now, this
development has been focused on models of fission gas behavior, grain growth, cracking, and effective
material property calculation. Starting in fiscal year 2015, MARMOT is also being funded to develop
models of U-Si fuel, though this efforts are waiting for the development of a U-Si inter-atomic potential.
In FY 2015 the Advanced Fuel Campaign under the Fuel Cycle Research & Development (FCRD)
program and the U.S. High-Performance Research Reactors (USHPRR) program are also funding the
development of metal fuels models in MARMOT.

Future work on MARMOT will include the development of new materials models. A basis for such
developments will be an improved implementation of the KKS model to support multi-phase systems
with arbitrary numbers of phases. We will be working on novel radiation damage models by coupling
MARMOT to Monte Carlo methods for the simulation of the primary damage phase. Enhancements
are planned for the brittle fracture models and model for coupling crystal plasticity with phase field is
planned. Work will continue on supporting anisotropic interface properties, coupling to thermodynamic
databases, and supporting CALPHAD free energy models.
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